If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144p^2-49=0
a = 144; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·144·(-49)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-168}{2*144}=\frac{-168}{288} =-7/12 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+168}{2*144}=\frac{168}{288} =7/12 $
| 0=3(s-1)+5 | | 2y^2–23y–12=0 | | A=9/8(h-57) | | 0.75t+12.5=0.75(t+8) | | -10x+3=-53 | | x+120=1.2x | | P(x)=4x4−x3−8x2+18x−4 | | 23m+6T=117 | | 9=v+2v | | 10x+3=-53 | | x^2-25x+126=0 | | 2(h-8)-h=h-18 | | -21x-63=-1071 | | x²-25x+126=0 | | f^2–19f–20=0 | | 3d-26=-149 | | 2.7+10m=7.63 | | 4a+12-2a+12=20 | | x/3/1=5/2 | | x²=3²+3² | | -24k-7=-1207 | | 4-21x=18+30x | | -2y+53=151 | | y²=3²+3² | | 3(x-5)=-54 | | 6x-4+3=-8-5 | | 19a+4=-775 | | 42=2m+22 | | 14x-12=16x-2 | | A=-5(5b-5) | | -4y-6=50 | | 8n+11=n-3 |